Business

Bent-Core Based Main-Chain Polymers Showing the Dark Conglomerate Liquid Crystal Phase

Description
Bent-Core Based Main-Chain Polymers Showing the Dark Conglomerate Liquid Crystal Phase
Categories
Published
of 7
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Share
Transcript
  SUPPORTING INFORMATION Bent-core based main-chain polymers showing the dark conglomerate liquid crystal phase  Nélida Gimeno  a ‡  , Antoni Sánchez-Ferrer   b ‡  , Nerea Sebastián   c  , Raffaele Mezzenga  b  ,  M. Blanca Ros  a *   a Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain. b  ETH Zurich , Institute of Food, Nutrition & Health,  Food & Soft Materials Science Group Schmelzbergstrasse 9, LFO, E23-29 , CH-8092 Zürich , Switzerland. c  Departamento de Física Aplicada II. Facultad de Ciencia y Tecnología. Universidad del País Vasco. Apdo. 644. 48080-Bilbao, Spain. ‡ The first two authors contributed equally to this study. Experimental Section Synthesis.  A slightly different synthetic route from that reported before for monomer M  was used. 1  The synthetic route followed is shown in Scheme 1. Intermediate compounds 1 , 2   2 , 2  and 3 3  were described in previous papers and the characterization data completely agree with the reported ones.    Scheme 1. Synthetic route of monomer   M. Synthesis of monomer M. To a solution of 1.50 g (3.52 mmol) of the 3,4'-biphenyl bis-4-hydroxybenzoate ( 2 ) in 170 mL of distilled dichloromethane, 2.66 g (9.15 mmol) of 4-[4-(undec-10-enyloxy)benzoic acid and 0.043 g (0.35 mmol) of N,N-dimethylaminopyridine (DMAP) were added under argon atmosphere. The mixture was cooled in a water-ice bath and after 30 minutes, 2.03 g (1.97 mmol) of dycyclohexylcarbodiimide (DCC) were added. The reaction mixture was stirred for 24 h at room temperature. After this time, the white solid was filtered off and the solvent evaporated. The crude product was purified by crystallization from ethyl acetate. Yield:   2.30 g of white solid (67%). R  f    (dichloromethane) :  0.60. mp: C 104ºC Col r   146ºC I. 1 H-NMR (300 MHz, CDCl 3 ) δ : 1.33-1.48 (m, xH), 1.78-1.88 (m,4H), 2.02-2.19 (m, 4H), 4.06 (t, J=6.6Hz, 4H), 4.94 (d, J=10.2, 2H), 5.02 (d, J=17.4, 2H), 5.76-5.90 (m, 2H), 7.00 (d, J=8.7Hz, 4H), 7.20-7.25 (m, 1H), 7.32 (d, J=8.7, 2H), 7.38 (d, J=8.4Hz, 4H), 7.47 (s, 2H), 7.52 (d, J=4.8Hz, 2H),  7.68 (d, J=8.4Hz, 4H), 8.16 (d, J=8.7Hz,4H), 8.31 (dd, J 1 =2.7, J 2 =8.7Hz, 4H). 13 C-NMR (300 MHz, CDCl 3 ) δ : 26.0, 28.9, 29.1, 29.3, 29.4, 29.5, 33.8, 68.4, 114.2, 114.4, 120.5, 120.6, 120.9, 122.0, 122.1, 124.7. 126.8, 126.9, 128.3, 129.9, 138.0, 139.2, 142.1, 150.7, 151.4, 163.8, 164.2, 164.5. FTIR (ATR-diamond): 3078 (st, ArC-H), 2924 (st, C-H), 2852 (st, OC-H), 1720 (st, ArCC=O), 1641 (st, C=C), 1602 (st as, ArC-ArC), 1510 (st sy, ArC-ArC), 1251 (st as, ArC-O-AlC), 1200 (st as, C-O), 1157 (st sy, C-O), 1055 (st sy, ArC-O-AlC) cm -1 . EA for C62H66O10: calc. C 76.68%, H 6.85%; found: C 76.86%, H 6.62%. Tetramethyldisiloxane (TMDSO). 1 H NMR (400 MHz, CDCl 3 ): δ =  4.68 (2H, m, SiH,  J   = 2.8 Hz), 0.19 (12H, d, SiCH 3 ,  J   = 2.8 Hz) ppm. FTIR (ATR-diamond): 2960 (st, SiC-H), 2123 (st, Si-H), 1417 ( δ  as, Si-CH 3 ), 1254 ( δ  sy, Si-CH 3 ), 1053 (st, Si-O-Si), 874 ( δ , Si-H), 829 ( γ , Si-CH 3 ), 766 (st, Si-C) cm -1 . 9 8 7 6 5 4 3 2 1 0 CH=C  H  2 TMDSOMP2   (m) P1Si-  H  C  H  =CH 2 a)  b) 6.0 5.8 5.2 5.0 4.8 4.6 TMDSOMP2 x 50   (ppm) P1 x 5 C  H  =CH 2 CH=C  H  2 Si-  H  Figure SI-1.  a) 1 H NMR spectra for the polymers P1  and P2,  the monomer M , and the chain extender TMDSO . b) Zoom in of the 1 H NMR region from 6.0 to 4.6 ppm.    9 8 7 6 5 4 3 2 1 0 CH=C  H  2 TMDSOMP2   (m) P1Si-  H  C  H  =CH 2   Figure SI-2.  FTIR spectra for the polymers P1  and P2,  the monomer M , and the chain extender TMDSO . 13 14 15 16 17 18 19 20       I    n      t    e    n    s      i      t    y    (  a .  u .   ) V  R  (mL)  P1 P2   Figure SI-3.  GPC traces for the polymers P1  and P2  in THF at 35 °C.  Figure SI-4.  SAXS and WAXS radial distribution for the polymers P1  (at 70 °C and 140 °C) and P2  (at 70 °C and 160 °C) and the corresponding fitting curves. 0.4 0.8 1.2 1.6 2  P1 (70 °C) baseline  q 1  fitting curve       I    n      t    e    n    s      i      t    y    (  a .  u .   ) q  (nm -1 ) 5 10 15 20       I    n      t    e    n    s      i      t    y    (  a .  u .   ) q  (nm -1 )  P1 (70 °C)  q 1   q 2   q 3   q '  q m   q " fitting curve   5 10 15 20  P1 (140 °C)  q 1   q 2   q 3   q '  q m  fitting curve       I    n      t    e    n    s      i      t    y    (  a .  u .   ) q  (nm -1 ) 0.4 0.8 1.2 1.6 2  P1 (140 °C) baseline  q 1  fitting curve       I    n      t    e    n    s      i      t    y    (  a .  u .   ) q  (nm -1 )   5 10 15 20  P2 (70 °C)  q 1   q 2   q 3   q '  q m   q " fitting curve       I    n      t    e    n    s      i      t    y    (  a .  u .   ) q  (nm -1 ) 0.4 0.8 1.2 1.6 2  P2 (70 °C) baseline  q 1  fitting curve       I    n      t    e    n    s      i      t    y    (  a .  u .   ) q  (nm -1 )   5 10 15 20  P2 (160 °C)  q 1   q 2   q 3   q '  q m  fitting curve       I    n      t    e    n    s      i      t    y    (  a .  u .   )   0.4 0.8 1.2 1.6 2       I    n      t    e    n    s      i      t    y    (  a .  u .   ) q  (nm -1 )  P2 (160 °C) baseline  q 1  fitting curve q  (nm -1 )
Search
Tags
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x