Math & Engineering

Starch Fossils and the Domestication and Dispersal of Chili Peppers (Capsicum spp. L.) in the Americas

Description
Starch Fossils and the Domestication and Dispersal of Chili Peppers (Capsicum spp. L.) in the Americas
Published
of 4
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Share
Transcript
  DOI: 10.1126/science.1136914 , 986 (2007); 315 Science    et al. Linda Perry,  spp. L.) in the AmericasCapsicumof Chili Peppers (Starch Fossils and the Domestication and Dispersal   www.sciencemag.org (this information is current as of March 5, 2007 ): The following resources related to this article are available online at   http://www.sciencemag.org/cgi/content/full/315/5814/986version of this article at: including high-resolution figures, can be found in the online Updated information and services,  http://www.sciencemag.org/cgi/content/full/315/5814/986/DC1 can be found at: Supporting Online Material  1 article(s) on the ISI Web of Science. cited by This article has been http://www.sciencemag.org/cgi/collection/anthroAnthropology : subject collections This article appears in the following http://www.sciencemag.org/about/permissions.dtl in whole or in part can be found at: this articlepermission to reproduce of this article or about obtaining reprints Information about obtaining registered trademark of AAAS. c 2007 by the American Association for the Advancement of Science; all rights reserved. The title SCIENCE is a CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the    o  n   M  a  r  c   h   5 ,   2   0   0   7  w  w  w .  s  c   i  e  n  c  e  m  a  g .  o  r  g   D  o  w  n   l  o  a   d  e   d   f  r  o  m   Starch Fossils and the Domesticationand Dispersal of Chili Peppers( Capsicum   spp. L.) in the Americas Linda Perry, 1 Ruth Dickau, 2 Sonia Zarrillo, 2 Irene Holst, 3 Deborah M. Pearsall, 4 Dolores R. Piperno, 1,3 Mary Jane Berman, 5 Richard G. Cooke, 3 Kurt Rademaker, 6 Anthony J. Ranere, 7 J. Scott Raymond, 2 Daniel H. Sandweiss, 6,8 Franz Scaramelli, 9 Kay Tarble, 10 James A. Zeidler 11 Chili peppers ( Capsicum  spp.) are widely cultivated food plants that arose in the Americas and arenow incorporated into cuisines worldwide. Here, we report a genus-specific starch morphotype thatprovides a means to identify chili peppers from archaeological contexts and trace both theirdomestication and dispersal. These starch microfossils have been found at seven sites datingfrom 6000 years before present to European contact and ranging from the Bahamas to southernPeru. The starch grain assemblages demonstrate that maize and chilies occurred together as anancient and widespread Neotropical plant food complex that predates pottery in some regions. C hili peppers, members of the genus  Cap- sicum , have been cultivated extensively,initially in the Americas and, after Co-lumbus, around the globe ( 1 ,  2 ). The lack of acomprehensive archaeobotanical record hashampered accurate reconstructions of the srcins,domestications, and dispersals of these plants.Macroremains of the fruits are confined to raresitesinaridenvironments,andreportsofseedsand pollen are even less common (Table 1). We foundthat a widespread, but previously unidentifiedarchaeological starch morphotype is derived fromchili pepper fruits and is commonly preserved onartifacts. We documented this microfossil fromseven archaeological sites ranging from theBahamas archipelago to Andean South America(Fig. 1) beginning 6000 years ago (Table 2).The five most economically notable spe-cies of chili pepper are  C. annuum ,  C. baccatum , C. chinense ,  C. frutescens , and  C. pubescens . Al-though it is generally agreed that the genus Capsicum  srcinated in Bolivia ( 2 ), the centersof domestication and dispersal patterns of thesespecies remain speculative. A combination of ar-chaeological evidence, genetic analyses, andmodern plant distributions have led researchersto suggest that   C. annuum  was initially domes-ticated in Mexico or northern Central America,  C. frutescens  in the Caribbean,  C. baccatum  in low-land Bolivia,  C. chinense  in northern lowlandAmazonia, and  C. pubescens  in the mid-elevationsouthern Andes ( 2 ,  3 ).All five species of domesticated chili peppers produce large, flattened lenticular starch grainswith a shallow central depression, not unlike a red blood cell in appearance (Fig. 2, A to C). Whenrotated into side view, a central linear figure  —  aclean line or split figure with sharp edges  —  runs parallel to the long axis of the grain. This figurecan extend for the entire length of the grain or just a part of it (Fig. 2, E and F). Ranging from about 13to45 m minlength,thestarchesofdomesticated peppers are easily distinguishable from smaller wild types in the microfossil record (Fig. 2D andtable S1). Although the basic three-dimensionalmorphology is consistent among all species of  Capsicum , micromorphological characters differ  between species.Three of the species  —  C. baccatum ,  C. frutescens , and  C. pubescens  —  can be identifiedon the basis of diagnostic morphotypes that haveunique features of the central depression. How-ever, these features are rare even in modern starchgrain assemblages. Otherwise, the morphologiesof starch grain assemblages from  C. annuum  and C.frutescens aresosimilarthat,intheabsenceofadiagnostic, it is not possible to assign grains to asingle species. The morphology of starch from  C.chinense issimilartobutnotidenticaltothatof   C.annuum or  C.frutescens ,andthemorphologiesof all three starches differ significantly from those of  C. baccatum  and  C. pubescens  which, in turn,differ from one another. Because similar typesoccurinallcongenericspeciesof  Capsicum ,either a diagnostic or a large archaeobotanical assem- blageisrequiredforasecurespeciesidentification.The presence of a basic genus-diagnosticstarch morphotype for   Capsicum  is predictable because of the lack of perfect barriers to intraspe-cific hybridization ( 4 ).  C. annuum ,  C. chinense ,and C.frutescens havebeendescribedasaspeciescomplex with a single ancestral gene pool ( 4 ).Therefore, it is not surprising that the starches of these three species are morphologically similar to one another. In contrast,  C. baccatum  and  C. pubescens  are distinct domesticated species inSouth America ( 4 ). Starches derived from other economicallysignificantspeciesintheSolanaceaeincluding  Lycianthes , the genus that recent phylo-genetic studies indicate is the most closely relatedto Capsicum ( 5 ),differfromthose ofchilipeppers(table S1 and fig. S1) ( 6  ). Thus, we have elimi-nated those plant species with the potential toconfuse the source of the microfossils.We recovered securely identified genus-diagnostic  Capsicum  starch microfossils fromseven sites throughout the Americas. The oldest  positively identified starches were found at thecontemporaneous sites of Loma Alta and RealAlto in southwestern Ecuador. Interpreted as avillage-sized, permanent settlement, Loma Altawas occupied for more than a millennium be-ginning about 6100 years before present (yr B.P.)( 7  ). We recovered chili pepper starches fromsediment samples, milling stones, and foodresiduesfromceramicsherdsofcookingvessels,all of which were excavated from the lower levels of the site.Similar to Loma Alta, Real Alto was a villagesiteatabout6100yrB.P.;however,byabout4750yr B.P., it had expanded into a regional ritual-ceremonial center ( 8 ,  9 ). The chili starches wereextracted from milling stones from two housefloors dating to the period of expansion. Micro-fossil evidence of maize,  Canna edulis  (achira),  Maranta arundinacea  (arrowroot),  Calathea  sp. 1 Archaeobiology Program, Department of Anthropology,Smithsonian National Museum of Natural History, PostOffice Box 37012, Washington, DC 20013 – 7012, USA. 2 Department of Archaeology, University of Calgary, 2500University Drive, NW, Calgary, Alberta, T2N 1N4, Canada. 3 Smithsonian Tropical Research Institute, Apartado Postal0843 – 03092, Balboa, Republic of Panama.  4 Departmentof Anthropology, 107 Swallow Hall, University of Missouri,Columbia, MO 65211, USA.  5 Center for American andWorld Cultures, 105 MacMillan Hall, Miami University,Oxford, OH 45056, USA.  6 Climate Change Institute,University of Maine, 120 Alumni Hall, Orono, ME 04469 – 5773, USA.  7 Department of Anthropology, Temple University,1115 West Berks Street, Philadelphia, PA 19122, USA. 8 Department of Anthropology, South Stevens 5773, Univer-sity of Maine, Orono, ME 04469 – 5773, USA.  9 Centro deAntropología, Instituto Venezolano de Investigaciones Cien-tíficas, Carretera Panamericana, Kilometer 11, Altos de Pipe,Venezuela.  10 Departamento de Arqueología, Etnohistoria yEcología Cultural, Escuela de Antropología, Facultad deCiencias Económicas y Sociales, Universidad Central deVenezuela, Caracas 1041, Venezuela.  11 Center for Environ-mental Management of Military Lands, Colorado StateUniversity, Fort Collins, CO 80523, USA. Table 1.  Published reports of archaeological  Capsicum  from well-dated sites with clearly definedstratigraphy. Species Plant part Region Site(s) Date(s) (yr B.P.) Source C. annuum  Fruits Mexico Tehuacan Valley 500 – 6000 (  24 ) C. annuum  Seeds and peduncles El Salvador Ceren 1400 (  25 ) C. baccatum  Fruits Peru Huaca Prieta, Punta Grande 4000 (  26 ) C. chinense  Fruits Peru Huaca Prieta, Punta Grande 4000 (  26 ) C. chinense  Fruits Peru Casma Valley Ca. 2500 – 3500 (  3 ) Capsicum  sp. Seeds Haiti En Bas Saline 600 (  27  ) Capsicum  sp. Pollen Venezuela La Tigra 450 – 1000 (  28 ) 16 FEBRUARY 2007 VOL 315  SCIENCE  www.sciencemag.org 986 REPORTS    o  n   M  a  r  c   h   5 ,   2   0   0   7  w  w  w .  s  c   i  e  n  c  e  m  a  g .  o  r  g   D  o  w  n   l  o  a   d  e   d   f  r  o  m   (leren), manioc, cucurbits (squash),  Canavalia  sp.(jack bean), and the Arecaceae family (palms) hasalso been recovered from Real Alto ( 10  –  12 ). Acombination of evidence, including plant remainsand site proximity to seasonally flooded bottom-land, indicates that agriculture was important in theeconomies of both Ecuadorian sites. Ecuador is not consideredtobethecenterofdomesticationforanyofthefivemajoreconomicspeciesofchilipeppers.Therefore,thepresenceofdomesticatedchilieswith-in this early, complex, agricultural system indicatesthat these plants must have been domesticatedelsewhereearlierthan6000yrB.P.andbroughtintothe region from either the north or the south.In central Panama, the Aguadulce Rock Shel-ter was occupied from about 13,000 to 3200 yr B.P. during both the Preceramic and Early Ce-ramic periods ( 13 ). The site has yielded evidencefor the cultivation of other plants not native tosouthern Central America, including maize, man-ioc, and squashes dating from about 9000 to 5800yr B.P. We identified chili pepper starch on agroundstone tool recovered from the top of the preceramicdeposits;thetoolandthusitsassociatedstarch residues have a stratigraphic date of about 5600yrB.P.Thisartifactalsoyieldedstarchgrainsfrom maize and domesticated yam ( 13 ).Theoccupationofthecoastalshell-middensiteof Zapotal coincides with the Early Ceramic period of this region of Panama, beginning about 4800yrB.P.( 14 ).Werecoveredstarchesofchiliesfrom groundstone tools, indicating that the peppers were processed and consumed alongsidea number of other domesticates at the site, in-cluding maize, manioc, and yams ( 15 ). By thistime, swidden cultivation of several domesticatedspecies, including maize and manioc, was wellestablished in the region, and farmers had sig-nificantly deforested the foothills near bothPanamanian sites ( 16  ). Thus, the Panamanianrecord documents the use of domesticated chiliesascomponentsofthedietofswiddenagriculturistsin both Preceramic and Ceramic era groups.Farther south at 3600 m in the Peruvian Andeslies the site of Waynuna, a Late Preceramichouseoccupiedbeginning about 4000yr B.P.At Waynuna, we found chili starches on processingtools in association with maize, arrowroot, and theremainsofwhatislikely Solanum sp.(potato)( 17  ).These data indicate that the residents of Waynunawere cultivating maize, tubers, and peppers andwere processing them into food on site. Waynunayieldedtheonlystarchassemblagethatcontainedaspecies-diagnostic morphotype. These chili pepper starchesappearedtobederivedfrom C.pubescens ,thespeciesthatincludesvarietiessuchastherocoto pepper, a chili that is cultivated at mid-altitude inthe Andes ( 2 ). When combined with macrofossilevidence (Table 1), the starch data indicate that thecultivation of three domesticated species of chili pepper was contemporaneous on the coast and inthehighlandsofPeruasearlyas4000yrB.P.intheLatePreceramicperiod.Thepresenceofnumerousother cultivars within the assemblages of eachregion indicates that sophisticated agriculture was practiced in both regions before the introduction of  pottery.We also found starches of chili peppers at theThree Dog site located on San Salvador Island intheBahamas.Thissitewasoccupiedbyagroupof fisher-horticulturists about 1000 yr B.P. Rep-resenting the material remains of at least onehousehold, the site consists of a midden, two ac-tivity areas, and a low-density (well-swept) area.Fifty-eight chert microliths, all typical of the mor- phology commonly described as manioc grater flakes ( 18  –  20 ), have been recovered, as wereceramic griddle sherds. The microliths yielded thestarchy remains of both maize and unidentifiedroots or tubers. We recovered chili starches fromtwo flakes that also contained starches of maize.Lastly, we recovered microfossil evidence for chili pepper at Los Mangos del Parguaza inVenezuela, a large habitation site occupied about  Fig. 1.  Archaeological sites mentioned in thetext. Red sites yielded starch grains of chilipepper. Blue sites yielded all other classes ofremains of chili pepper. Table 2.  Summary of Neotropical archaeological starches of  Capsicum . F, flaked tool; G,groundstone tool; C, ceramic sherd; S, sediment sample. Sample # Size ( m m) Source Date in yr B.P. (Ref.) Los Mangos, Venezuela (Arauquinoid, Valloid) Lev 1, 1 1 15 G ~500 – 1000 (  21 )Lev 2, 1 1 17 F ~500 – 1000 (  21 )Lev 3, 1 1 15 F ~500 – 1000 (  21 )Lev 3, 2 1 22 F ~500 – 1000 (  21 )Lev 5, 2 2 19, 20 F ~500 – 1000 (  21 )Lev 7, 1 2 20, 20 F ~500 – 1000 (  21 ) Three Dog, Bahamas (Lucayan) Z87-89 1 19 F 969 – 1265 Cal* (  29 )Z1032-1035 1 21 F 969 – 1265 Cal* (  29 ) Waynuna, Peru (Preceramic) Tool 10 2 18,24 F 3564 – 3837 Cal †  ( 17  )Tool 11 6 14 – 34 G 3564 – 3837 Cal †  ( 17  )Tool 29 2 24,25 G 3564 – 3837 Cal †  ( 17  )Tool 30 6 19 – 28 G 3564 – 3837 Cal †  ( 17  )Cat 36 1 18 S 3689 – 3969 Cal †  ( 17  )  Zapotal, Panama (Early Ceramic) C2N8F4 4 20-28 G 3560 – 4850 Cal ‡  ( 14 )C7N2 1 25 G 3560 – 4850 Cal ‡  ( 14 )C32N7 1 32.5 G 3560 – 4850 Cal ‡  ( 14 ) Real Alto, Ecuador (Valdivia 3) Structure 1 1 20 G 4400 – 4800 Cal †  ( 9 )Structure 1 3 24 – 26 G 4400 – 4800 Cal †  ( 9 )Structure 10 3 18 – 24 G 4400 – 4800 Cal †  ( 9 )Structure 10 1 24 G 4400 – 4800 Cal †  ( 9 )  Aguadulce, Panama (Late Preceramic) 350 3 24 – 28 G 5600 Cal (  30 ) Loma Alta, Ecuador (Early Formative) SS275 5 22 – 26 G 5050 – 6250 Cal †  ( 9 )SS275-2 6 16 – 24 G 5050 – 6250 Cal †  ( 9 )SS292 2 19, 20 G 4550 – 6050 Cal †  ( 9 )Sample 13 2 24, 28 C 4830 – 5280 Cal †  ( 9 )Sample 7 1 27 C 4080 – 4410 Cal †  ( 9 )Level 12 2 24, 28 S 4990 – 5310 Cal †  ( 9 )Sample 11 1 18 C 4250 – 4860 Cal †  ( 9 )Sample 10 1 22 C 4990 – 5310 Cal †  ( 9 )Level 14 2 24, 24 S 4990 – 5310 Cal †  ( 9 )Sample 9 1 28 C 4990 – 5310 Cal †  ( 9 ) *Standard and AMS radiocarbon dates from associated charcoal, 2 s  calibrated result.  † Standard radiocarbon date fromassociated charcoal, 2 s  calibrated result.  ‡ Standard radiocarbon dates from associated shell, adjusted for 12C/13C ratio,2 s  calibrated results. www.sciencemag.org  SCIENCE  VOL 315 16 FEBRUARY 2007  987 REPORTS    o  n   M  a  r  c   h   5 ,   2   0   0   7  w  w  w .  s  c   i  e  n  c  e  m  a  g .  o  r  g   D  o  w  n   l  o  a   d  e   d   f  r  o  m   500to1000yrB.P.( 21 ).Severallarge,deepstonemetates were scattered over the surface of the site.Excavation of a midden deposit yielded ceramicgriddle sherds and microlithic flakes that are oftenassociated with manioc processing ( 22 ). As at theThree Dog site, the remains of manioc are con-spicuously absent from an excavation that yieldedartifacts usually associated with manioc process-ing( 22 ).Thesameprocessingtoolsthatcontainedstarches of chili pepper also contained remains of maize. Root crops, including arrowroot,  Myrosma sp.(guapo),anda member of the Zingiberaceaefamily (ginger) also left their starchy remains.When combined with the data from the ThreeDog site, the chili pepper microfossils fromLos Mangos del Parguaza support the notionthat a sophisticated mixed subsistence economyofbothrootandseedcropsoccurredatthesesitesthat were initially categorized as being occupied by manioc horticulturists ( 23 ). Neither microfossils typical of wild species nor transitionalformsof  Capsicum wererecoveredfromany site. The presence of domesticated plants usedascondimentsratherthanasstaplefoodsduringthePreceramic period indicates that sophisticated agri-cultureandcomplexcuisinesaroseearlythroughout theAmericasandthattheexploitationofmaize,root crops, and chili peppers spread before the introduc-tion of pottery. Evidence from both macrobotanicalandmicrobotanicalremainsindicatesthatoncechili peppers became incorporated into the diet, they persisted. Apart from the chili peppers, maize is present at every site we sampled. Maize and chiliesoccur together from the onset of this record untilEuropean contact and, thus, represent an ancient  Neotropical plant food complex. References and Notes 1. C. B. Heiser Jr., in  Evolution of Crop Plants , N. W. Simmonds,Ed. (Longman, London, 1976), pp. 265 – 268.2. W. H. Eshbaugh, in  New Crops , J. Janick, J. E. Simon, Eds.(Wiley, New York, 1993), pp. 132 – 139.3. B. Pickersgill, in  Pre-Columbian Plant Migration ,D. Stone, Ed. (Harvard Univ. Press, Cambridge, MA,1984), pp. 105 – 123.4. B. Pickersgill,  Biol. Zent.  107 , 381 (1988).5. L. Bohs, R. G. Olmstead,  Syst. Bot.  22 , 5 (1997).6. Materials and methods are available as supportingmaterial on  Science  Online.7. J. S. Raymond, in  Pacific Latin America in Prehistory: TheEvolution of Archaic and Formative Cultures , M. Blake,Ed. (Washington State Univ. Press, Pullman, 1999),pp. 149 – 159.8. D. Lathrap, J. G. Marcos, J. A. Zeidler,  Archaeology   30 , 2(1977).9. J. A. Zeidler, in  Archaeology of Formative Ecuador  ,J. S. Raymond, R. Burger, Eds. (Dumbarton Oaks,Washington, DC, 2003), pp. 487 – 527.10. D. M. Pearsall, K. Chandler-Ezell, J. A. Zeidler,  J. Archaeol. Sci.  31 , 423 (2004).11. D. M. Pearsall, in  Archaeology of Formative Ecuador  ,J. S. Raymond, R. Burger, Eds. (Dumbarton Oaks,Washington, DC, 2003), pp. 213 – 257.12. K. Chandler Ezell, D. M. Pearsall, J. A. Zeidler,  Econ. Bot. 60 , 103 (2006).13. D. R. Piperno, A. J. Ranere, I. Holst, P. K. Hansell,  Nature 407 , 894 (2000).14. R. G. Cooke, A. J. Ranere,  World Archaeol.  24 , 114 (1992).15. R. Dickau, thesis, Temple University, Philadelphia, PA(2005).16. D. R. Piperno, D. M. Pearsall,  The Origins of Agriculture in theLowland Neotropics  (Academic Press, San Diego, CA, 1998).17. L. Perry  et al. ,  Nature  440 , 76 (2006).18. M. J. Berman, A. K. Sievert, T. Whyte,  Lat. Am. Antiq.  10 ,415 (1999).19. M.J.Berman,D.M.Pearsall, Lat.Am. Antiq. 11 ,219(2000).20. W. R. DeBoer,  Am. Antiq.  40 , 419 (1975).21. K. Tarble, thesis, University of Chicago, Chicago, IL (2006).22. L. Perry,  J. Archaeol. Sci.  31 , 1069 (2004).23. L. Perry,  Latin Am. Antiq.  16 , 409 (2005).24. C. E. Smith, in  Prehistory of the Tehuacan Valley  , D. S.Byers, Ed. (Texas Univ. Press, Austin, 1967), pp. 220 – 255.25. D. L. Lentz, M. P. Beaudry-Corbett, M. L. R. del Aguilar,L. Kaplan,  Lat. Am. Antiq.  7 , 247 (1996).26. B. Pickersgill,  Am. Antiq.  34 , 54 (1969).27. L. A. Newsom, E. S. Wing,  On Land and Sea: Native American Uses of Biological Resources in the West Indies (Univ. of Alabama, Tuscaloosa, 2004).28. C. S. Spencer, E. M. Redmond, M. Rinaldi,  Lat. Am. Antiq. 5 , 119 (1994).29. M.J. Berman,P. Gnivecki, WorldArchaeol. 26 ,421(1995).30. A. J. Ranere, R. G. Cooke, in  Paths to Central AmericanPrehistory  , F. W. Lange, Ed. (Univ. Press of Colorado,Niwot, 1996), pp. 49-77.31. Comparative materials were supplied by the U.S. NationalHerbarium, E. Perry, J. Perry, and I. Shimada. B. Smithprovided comments on the manuscript. Funding forarchaeological excavations and starch grain studies wasprovided by the American Philosophical Society, theConcejo de Desarrollo Científico y Humanístico de laUniversidad Central de Venezuela, the Escuela SuperiorPolitecníca del Litoral, the Foundation for Explorationand Research on Cultural Origins, the Heinz CharitableTrust Latin American Archaeology Program, NSF, theOffice of the Provost at Ithaca College, the Programa deAntropología para el Ecuador, the Smithsonian NationalMuseum of Natural History, the Smithsonian TropicalResearch Institute, the Social Sciences and HumanitiesCouncil of Canada, Temple University, the University ofMissouri Research Board, and Wenner-Gren. Supporting Online Material www.sciencemag.org/cgi/content/full/315/5814/986/DC1Materials and MethodsSOM TextFig. S1Tables S1 and S2References30 October 2006; accepted 21 December 200610.1126/science.1136914 Multipotent  Drosophila   Intestinal StemCells Specify Daughter Cell Fatesby Differential Notch Signaling Benjamin Ohlstein and Allan Spradling* The adult  Drosophila  midgut contains multipotent intestinal stem cells (ISCs) scattered along itsbasement membrane that have been shown by lineage analysis to generate both enterocytesand enteroendocrine cells. ISCs containing high levels of cytoplasmic Delta-rich vesicles activatethe canonical Notch pathway and down-regulate Delta within their daughters, a process thatprograms these daughters to become enterocytes. ISCs that express little vesiculate Delta, or aregenetically impaired in Notch signaling, specify their daughters to become enteroendocrine cells.Thus, ISCs control daughter cell fate by modulating Notch signaling over time. Our studies suggestthat ISCs actively coordinate cell production with local tissue requirements by this mechanism. S tem cells in adult tissues frequently reside inspecific anatomical positions known asniches, whose microenvironment represses premature differentiation and controls prolifera-tion ( 1 ,  2 ) .  Several different signal transduction pathways  —  including BMP (bone morphogenetic protein), JAK/STAT (Janus kinase/signal trans-ducer and activator of transcription), Wnt, and Fig. 2.  Modern and ar-chaeological starch gran-ules from  Capsicum . ( A )Starch granule from thefruit of modern  Capsicumbaccatum  var.  pendulum (aji mirasol) showing typ-ical morphology. Notethe rounded lenticularform and large, flat, cen-tral depression. ( B ) Ar-chaeological  Capsicum starch granule fromLomaAlta. ( C ) Archaeologicalstarch granule of  Capsi-cum  from Real Alto. ( D )Starch granule from amodern specimen of  Cap- sicum annuum  var.  minimum . This starch granule is typical of those from wild peppers. ( E ) Side viewof a modern starch granule from  Capsicum baccatum . Note the linear figure. ( F ) Side view of anarchaeological starch granule of  Capsicum  from Zapotal. 16 FEBRUARY 2007 VOL 315  SCIENCE  www.sciencemag.org 988 REPORTS    o  n   M  a  r  c   h   5 ,   2   0   0   7  w  w  w .  s  c   i  e  n  c  e  m  a  g .  o  r  g   D  o  w  n   l  o  a   d  e   d   f  r  o  m 
Search
Similar documents
View more...
Tags
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x